f07 — Linear Equations (LAPACK) f07mve

NAG C Library Function Document

nag_zherfs (f07mvc)

1 Purpose

nag_zherfs (f07mvc) returns error bounds for the solution of a complex Hermitian indefinite system of
linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement,
in order to reduce the backward error as much as possible.

2 Specification

void nag_zherfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const Complex a[], Integer pda, const Complex af[], Integer pdaf,
const Integer ipiv[], const Complex b[], Integer pdb, Complex x[],
Integer pdx, double ferr[], double berr[], NagError *fail)

3 Description

nag_zherfs (f07mvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides
AX = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_zherfs (f07mvc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)x =0+ b
|6a;;| < Blai;| and [6b;| < B|b;].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max |z;|
1 1

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f07mve. 1

f07mve NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo = Nag_Upper, then the upper triangular part of A is stored and A is factorized as
PUDU" P" | where U is upper triangular;

if uplo = Nag_Lower, then the lower triangular part of A is stored and A is factorized as
PLDLYPT, where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim| — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the n by n original Hermitian matrix A as supplied to nag_zhetrf (f07mrc).

6: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint. pda > max(1,n).

7: af{dim] — const Complex Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

On entry: details of the factorization of A, as returned by nag_zhetrf (f07mrc).

8: pdaf — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array af.

Constraint. pdaf > max(1,n).

9: ipiv[dim] — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On entry: details of the interchanges and the block structure of D, as returned by nag_ zhetrf
(f07mrc).

10: b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

07mve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07mve

11:

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

12: x[dim] — Complex Input/Output
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_zhetrs (f07msc).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...

15: berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,...,7.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

[NP3645/7] f07mve.3

f07mve NAG C Library Manual

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_SINGULAR
The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n” real floating-

point operations. Each step of iterative refinement involves an additional 24n? real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 5 and never more than 11. Each solution involves approximately 8n’ real
operations.

The real analogue of this function is nag_dsyrfs (f07mhc).
9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

f07mve.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

—1.36 + 0.00¢ 1.58 4+ 0.90: 221 —0.214 3.91 4+ 1.50¢
A 1.58 —0.90; —8.87+0.00; —1.84 —-0.03: —1.78-+1.187
o 221 4+0.21z —1.84+0.03: —4.63 +0.00: 0.114+0.11¢
391 —1.50; —1.78 —1.18; 0.11 —0.117 —1.84 +0.007
and
779 + 548, -3539 + 18.017
B —-0.77 — 16.05¢ 423 — 70.02:
| -9.58 + 3.88i —24.79 — 8.40i
298 — 10.187 28.68 — 39.89

Here A is Hermitian indefinite and must first be factorized by nag_zhetrf (f07mrc).

9.1 Program Text

/* nag_zherfs (f07mvc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer i, j, n, nrhs, pda, pdaf, pdb, pdx;
Integer ferr_len, berr_len;
Integer exit_status=0;

Nag_UploType uplo_enum;
NagError fail;
Nag_OrderType order;

/* Arrays */

Integer *ipiv=0;

char uplo([2];

Complex *a=0, *af=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I - 1]

#define AF(I,J) af[(J-1)*pdaf + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]

#define X(I,J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J)

#define AF(I,J)

al(I-1)*pda + J - 1]

af[(I-1)*pdaf + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

Vprintf ("f07mvc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("%s*["\n] ");

Vscanf ("%$1d%1d%*["\n] ", &n,
#ifdef NAG_COLUMN_MAJOR

&nrhs) ;

pda = n;
pdaf = n;
[NP3645/7]

f07mvce

f07mve.5

f07mve NAG C Library Manual

pdb = n;

pdx = n;
#else

pda = n;

pdaf = n;

pdb = nrhs;

pdx = nrhs;
#endif

ferr_len = nrhs;
berr_len = nrhs;

/* Allocate memory */

if (!(ipiv = NAG_ALLOC(n, Integer)) ||

a = NAG_ALLOC(n * n, Complex)) ||

af = NAG_ALLOC(n * n, Complex)) |
NAG_ALLOC(n * nrhs, Complex)) ||

X = NAG_ALLOC(n * nrhs, Complex)) ||

berr = NAG_ALLOC (berr_len, double)) ||

ferr = NAG_ALLOC(ferr_len, double)))

o
Il

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A and B from data file, and copy A to AF and B to X */

Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower ;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++j)
Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]).im);
¥
Vscanf ("sx[“\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= i; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,]).im);
}
Vscanf ("sx["\n] ");
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
3
Vscanf ("$*[*\n] ");
/* Copy A to AF and B to X */
if (uplo_enum == Nag_Upper)
{

for (1 = 1; 1 <= n; ++1)
for (j = 1i; j <= n; ++3j)

AF(i,]j).re = A(i,]).re;

f07mvc.6 [NP3645/7]

f07 — Linear Equations (LAPACK) f07mve

AF(i,j).im = A(i,§).im;

}
b
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3)
{
AF(i,]j).re A(i,j).re;
AF(i,]J).im = A(i,]).1im;
}
}
}
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
{
X(i,j).re = B(i,]J).re;
X(i,j).im = B(i,7J).1im;
¥
}

/* Factorize A in the array AF */
fO7mrc(order, uplo_enum, n, af, pdaf, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7mrc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute solution in the array X */
fO7msc(order, uplo_enum, n, nrhs, af, pdaf, ipiv, x, pdx,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7msc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Improve solution, and compute backward errors and */

/* estimated bounds on the forward errors */

fO7mvc(order, uplo_enum, n, nrhs, a, pda, af, pdaf, ipiv,
b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7mvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$11l.1le%s", berr[j-1], j%4 == 0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds "
"(machine-dependent)\n") ;
for (j = 1; j <= nrhs; ++j)
Vprintf ("%1ll.less", ferr[j-1], j%4 == 0 2"\n":" ");
Vprintf ("\n") ;
END:
if (ipiv) NAG_FREE (ipiv);
if (a) NAG_FREE(a);

[NP3645/7] Sf07mve.7

f07mvc
if (af) NAG_FREE (af);
if (b) NAG_FREE(b);
if (x) NAG_FREE (x);
if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE (ferr);
return exit_status;

9.2 Program Data

fO07mvc Example Program Data

4 2
IL’
(-1.36, 0.00)
(1.58,-0.90) (-8.87, 0.00)
(2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
(3.91,-1.50) (-1.78,-1.18) (0.11,-0.11) (-1.84, 0.00)
(7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) (4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
(2.98,-10.18) (28.68,-39.89)

9.3 Program Results

fO07mvc Example Program Results
Solution(s)
0000, 5.0000

3.
1.
7.0000,-2.0000
8.

2
0000,-4.0000)
)
)
0000, 6.0000)

(
(-
(
(-

Backward errors (machine-dependent)

9.0e-17 5.8e-17
Estimated forward error bounds (machine-dependent)
2.6e-15 3.0e-15

NAG C Library Manual

:Values of N and NRHS
:Value of UPLO

:End of matrix A

:End of matrix B

Jf07mve.8 (last)

[NP3645/7]

	f07mvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

